首页> 外文OA文献 >Radiative effects of ozone waves on the Northern Hemisphere polar vortex and its modulation by the QBO
【2h】

Radiative effects of ozone waves on the Northern Hemisphere polar vortex and its modulation by the QBO

机译:臭氧波对北半球极涡的辐射效应及其QBO的调制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The radiative effects induced by including interactive ozone, in particular, the zonally asymmetric part of the ozone field, have been shown to significantly change the temperature of the NH winter polar cap, and correspondingly the strength of the polar vortex. However, there is still a debate on whether this effect is important enough for climate simulations to justify the numerical cost of including chemistry calculations in long climate integrations. In this paper we aim to understand the physical processes by which the radiative effects of including interactive ozone, and in particular the radiative effects of zonally asymmetric ozone anomalies (ozone waves), amplify to significantly influence the winter polar vortex. Using the NCAR Whole Atmosphere Community Climate Model in the natural configuration, in which ozone depleting substances and green house gases are fixed at 1960's levels, we find a significant effect on the winter polar vortex only when examining the QBO phases separately. Specifically, the seasonal evolution of the midlatitude signal of the QBO – the Holton-Tan effect – is delayed by one to two months when radiative ozone wave effects are removed. Since the ozone waves affect the vortex in an opposite manner during the different QBO phases, when we examine the full time series, besides an early fall direct radiative effect, we find no statistically significant winter effect. We start by quantifying the direct radiative effect of ozone waves on temperature waves, and consequently on the zonal mean zonal wind, and show that this effect is most significant during early fall. We then show how the direct radiative effect amplifies by modifying the evolution of individual upward planetary wave pulses and their induced mean flow deceleration during early winter when stratospheric westerlies just form and waves start propagating up to the stratosphere. The resulting mean-flow differences accumulate during fall and early winter, after which they get amplified through wave-mean flow feedbacks. We find that the evolution of these early-winter upward planetary wave pulses and their induced stratospheric zonal mean flow deceleration are qualitatively different between QBO phases, providing a new mechanistic view of the extratropical QBO signal (the Holton-Tan effect). We further show how these differences result in an opposite effect of the radiative ozone wave perturbations on the mean flow deceleration for east and west QBO phases.
机译:已显示出通过包含相互作用的臭氧(尤其是臭氧场的区域不对称部分)引起的辐射效应会显着改变NH冬季极地帽的温度,并相应地改变极地涡旋的强度。但是,对于这种影响是否对气候模拟足够重要,以证明将化学计算包括在长期气候整合中的数字成本是合理的,仍存在争议。在本文中,我们旨在了解物理过程,其中包括相互作用的臭氧的辐射效应,尤其是区域不对称臭氧异常(臭氧波)的辐射效应会放大,从而极大地影响冬季极地涡旋。在自然配置中使用NCAR整个大气社区气候模型,其中消耗臭氧层的物质和温室气体固定在1960年代的水平,只有在分别检查QBO阶段时,我们才发现对冬季极地涡流有重大影响。特别是,当消除了辐射臭氧波的影响后,QBO的中纬度信号的季节性演变(霍尔顿-谭效应)被延迟了1-2个月。由于臭氧波在不同的QBO阶段以相反的方式影响涡旋,因此当我们检查整个时间序列时,除了早期的秋季直接辐射效应外,我们没有发现统计学上显着的冬季效应。我们首先通过量化臭氧波对温度波的直接辐射效应,进而对区域平均纬向风的辐射效应进行量化,并表明这种效应在初秋时最显着。然后,我们展示了如何通过修改单个的向上行星波脉冲的演变及其在初冬时平流层西风刚形成且波开始传播到平流层的诱导平均流量减速度来放大直接辐射效应。产生的平均流量差在秋季和初冬期间累积,然后通过波均流量反馈将其放大。我们发现,这些初冬向上的行星波脉冲的演化及其引起的平流层纬向平均流速减速度在QBO相位之间在质上是不同的,从而提供了有关温带QBO信号的新机制(霍尔顿-谭效应)。我们进一步表明,这些差异如何导致东部和西部QBO相的臭氧流辐射扰动对平均流减速度的相反影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号